

Syllabus for Information Technology

Design & Analysis of Algorithm

Course Code: IT501

Contact: 3L + 1T

Credits: 4

Complexity Analysis: [2L] Time and Space Complexity, Different Asymptotic notations – their mathematical significance Algortihm Design Techniques: Divide and Conquer: [3L] Basic method, use, Examples - Binary Search, Merge Sort, Quick Sort and their complexity Heap Sort and its complexity . Dynamic Programming: [3L] Basic method, use, Examples – Matrix Chain Manipulation, All pair shortest paths, single source shortest path. Backtracking: [2L] Basic method, use, Examples -8 queens problem, Graph coloring problem. Greedy Method: [3L] Basic method, use, Examples – Knapsack problem, Job sequencing with deadlines, Minimum cost spanning tree by Prim's and Kruskal's algorithm. Lower Bound Theory: [1L] O(nlgn) bound for comparison sort Disjoint set manipulation: [2L] Set manipulation algorithm like UNION-FIND, union by rank. Graph traversal algorithm: Recapitulation[1L] Breadth First Search(BFS) and Depth First Search(DFS) – Classification of edges - tree, forward, backward cross edges – complexity and comparison String matching problem: [3L] Different techniques - Naive algorithm, string matching using finite automata, and Knuth, Morris, Pratt (KMP) algorithm with their complexities. Amortized Analysis:[3L] Aggregate, Accounting, and Potential Method. Network Flow: [3L] Ford Fulkerson algorithm, Max-Flow Min-Cut theorem (Statement and Illustration) Matrix Manipulation Algorithm:[3L] Strassen's matrix manipulation algorithm; application of matrix multiplication to solution of simultaneous linear equations using LUP decomposition, Inversion of matrix and Boolean matrix multiplication

Syllabus for Information Technology

Design & Analysis of Algorithm

Notion of NP-completeness:[3L] P class, NP class, NP hard class, NP complete class — their interrelationship, Satisfiability problem, Cook's theorem (Statement only), Clique decision problem Approximation Algorithms:[3L] Necessity of approximation scheme, performance guarantee, polynomial time approximation schemes, vertex cover problem, travelling salesman problem.

Text Book:

1. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, "Introduction to Algorithms"

2. A. Aho, J.Hopcroft and J.Ullman "The Design and Analysis of Algorithms"

3. D.E.Knuth "The Art of Computer Programming", Vol. 3

4. Jon Kleiberg and Eva Tardos, •Algorithm Design•

Reference:

1. K.Mehlhorn, "Data Structures and Algorithms" - Vol. I & Vol. 2.

2. S.Baase "Computer Algorithms"

3.E.Horowitz and Shani "Fundamentals of Computer Algorithms"

4.E.M.Reingold, J.Nievergelt and N.Deo- "Combinational Algorithms- Theory and Practice", Prentice Hall, 1997

B. P. Poddar Institute of Management & Technology Department of Information Technology Lesson Plan Academic Year: 2018-19 Semester: Odd

Course Name: Design & Analysis of Algorithm **Course Code:** IT501 **Class :** IT 3rd Year

Lecture	Торіс	Text	Text & Web	Teaching	Teaching Aids	
No.		Book	References	Methods	J	
L1	Time and Space Complexity, Different	T1,T2	R1,R3,	Lecturing	Whiteboard	
	Asymptotic notations – their mathematical		W1,W3			
L2	Algorithm Design Techniques: Divide and	T1,T2	R1,R3,	Lecturing, PPT,	LCD Projector,	
	Conquer: Basic method, use		W1,W3	Think pair Share	Desktop	
L3	Binary Search	T1	R1,R3,	Lecturing	LCD Projector,	
			W1,W3		Desktop	
TI	Problems on time & space			Tutorial Method	Whiteboard	
	complexity. Average Case Time Complexity			Lecturing	Markar Pen	
L4	Merge Sort and its complexity	T1	R1,R3,	PPT,	LCD Projector,	
			W1,W3	Lecturing	Desktop	
L5	Quick Sort and its complexity	T1,T3	R1,R3,	PPT,	LCD Projector,	
			W1,W3	Lecturing	Desktop	
L6	Heap Sort and its complexity	T1,T3	R1,R3,	PPT,	LCD Projector,	
			W1,W3	Lecturing	Desktop	
T2	Comparative study of different sorting			Group	LMS	
	algorithms			Discussion,	Whiteboard	
L7	Dynamic Programming: Basic method, use,	T1,T3	R1,R3,	PPT,	LCD Projector,	
			W1,W3	Lecturing	Desktop	
L8	Matrix Chain Manipulation	T1,T3	R1,R3,	Lecturing	Whiteboard	
			W2,W3			
L9	All pair shortest paths	T1,T2	R1,R3,	PPT,	LCD Projector,	
			W2,W3	Lecturing	Desktop	
T3	Q&A on Dynamic Programming Concepts			Quiz	LMS	
L10	Single source shortest path.	T1,T2	R1,R3,	PPT,	LCD Projector,	
			W1,W3	Lecturing	Desktop	
L11	Backtracking: Basic method, use,	T1,T2	R1,R2,W1,W	PPT,	LCD Projector,	
			3	Lecturing	Desktop	
L12	8 queens problem,	T1,T3	R2,R3,	Lecturing	Whiteboard	
			W1,W3			
T4	Problem solving using Backtracking strategies			Tutorial Method	Whiteboard	
L13	Graph coloring problem	T1,T3	R1,R3,W1,W 3	Lecturing	Whiteboard	
L14	Greedy Method, Basic method, use	T1,T2	R1,R3, W1,W3	Lecturing	Whiteboard	
L15	Knapsack problem	T1,T2	R1,R3, W1,W3	Lecturing	Whiteboard	
T5	Comparative analysis of backtracking and	1		Group	LMS	
	Divide & Conquer strategies.			Discussion,Quiz		

B. P. Poddar Institute of Management & Technology Department of Information Technology Lesson Plan

Academic Year: 2018-19 Semester: Odd

L16	Job sequencing with deadlines	T1,T3	R1,R3, W1,W3	Whiteboard		
Lecture	Торіс	Text	Text & Web	Teaching	Teaching Aids	
No.	L L	Book	References	Methods	Tenening Trais	
L17	Minimum cost spanning tree by Prim's	T1,T3	R1,R2,	PPT,	LCD Projector,	
	algorithm	· · ·	W2,W3	Lecturing	Desktop	
L18	Minimum cost spanning tree by Kruskal's	T1,T3	R1,R3	PPT,	LCD Projector,	
	algorithm	· · ·	W1,W3	Lecturing	Desktop	
Т6	Problem practice on MST .			Tutorial Method	Whiteboard	
L19	Lower Bound Theory: O(nlgn) bound for	T1,T3	R1,R3	Lecturing	Whiteboard	
	comparison sort		W1,W3		Markar Pen	
L20	Disjoint set manipulation algorithm like	T1,T3	R1,R3	Lecturing	Whiteboard	
	UNION, FIND, union by rank.		W1,W3		Markar Pen	
L21	Graph traversal algorithm: Breadth First	T1,T3	R1,R3,	PPT,Lecturing	LCD Projector	
	Search(BFS)		W1,W2		Whiteboard	
Τ7	Group Discussion on lower bound theory			Group Discussion	Whiteboard	
L22	Depth First Search(DFS)	T1,T3	R1,R3,	PPT,Lecturing	Whiteboard	
			W2,W3			
L23	Classification of edges- tree, forward, back	T1,T2	R1,R3,	PPT,Lecturing	Whiteboard	
	and cross edges – complexity and		W1,W3			
L24	String matching problem: Naive algorithm	T1,T2	R2,R3, W1,W3	Lecturing	Whiteboard	
Т8	Q&A on DFS & BFS			Quiz	LMS	
L25	String matching using finite automata, and	T1,T2	R1,R3,	Lecturing	Whiteboard	
220	Knuth, Morris	,	W1,W3	6		
L26	Pratt (KMP) algorithm with their	T1,T3	R1,R3,	Lecturing	Whiteboard	
	complexities.	· · ·	W1,W3	6		
L27	Amortized Analysis: Aggregate Method,	T1,T3	R1,R3,	Lecturing	Whiteboard	
	Accounting Method & Potential Method.	,	W2,W3			
Т9	Q&A on applications of Automata theory in		, í	Quiz	LMS	
	algorithm analysis					
L28	Network Flow: Ford Fulkerson	T1,T3	R1,R3,	Lecturing	Whiteboard	
	algorithm, Max Flow Min Cut theorem	,	W2,W3			
L29	Matrix Manipulation Algorithm: Strassen's	T1,T3	R1,R3,	PPT,	LCD Projector,	
	matrix manipulation algorithm	,	W1,W3	Lecturing	Desktop	
L30	Application of matrix multiplication to	T1,T3	R1,R3,	Lecturing	Whiteboard	
	solution of simultaneous linear equations		W1,W3			
T10	Applications of Ford Fulkerson algorithms &		, í	Lecturing	Whiteboard	
	Strassen's matrix manipulation algorithm					
L31	Inversion of matrix and Boolean matrix	T1,T3	R1,R3,	Lecturing	Whiteboard	
201	multiplication	11,10	W1,W3	Leetwing		
L32	Notion of NP-completeness: P class, NP	T1,T3	R1,R3,	PPT,	LCD Projector,	
	class, NP hard class, NP complete class –	· · ·	W1,W3	Lecturing	Desktop	
L33	Cook's theorem (Statement only), Clique	T1,T3	R1,R3,	Lecturing	Whiteboard	
000	decision problem .Approximation	, -	W1,W3	6		
T11	Quiz on NP-Completeness		, -	Quiz	LMS	
L34	Necessity of approximation scheme,	T1,T3	R1,R3,	Lecturing	Whiteboard	
	performance guarantee	,	W1,W3	6	Markar Pen	
L35	Polynomial time approximation schemes,	T1,T2	R1,R3,	Lecturing	Whiteboard	
	vertex cover problem,		W2,W3		Markar Pen	
L36	Traveling salesman problem.	T1,T3	R1,R3,	PPT,	LCD Projector	
	6 L	.,	W1,W3	Lecturing	Desktop	

B. P. Poddar Institute of Management & Technology Department of Information Technology Lesson Plan

Academic Year: 2018-19 Semester: Odd

T12	Q&A on optimization based strategies		Quiz	LMS

Text Book:

- T1 : T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, "Introduction to Algorithms"
- T2 : Aho, J.Hopcroft and J.Ullman "The Design and Analysis of Algorithms"
- T3 : D.E.Knuth "The Art of Computer Programming", Vol. 3
- T4 : Jon Kleiberg and Eva Tardos, "Algorithm Design".

Text Reference:

- R1: K.Mehlhorn, "Data Structures and Algorithms" Vol. I & Vol. 2.
- R2 : S.Baase "Computer Algorithms"
- R3 : E.Horowitz and Shani "Fundamentals of Computer Algorithms"
- R4: E.M.Reingold, J.Nievergelt and N.Deo"Combinational AlgorithmsTheory and Practice",
- Prentice Hall

Web Reference:

- W1: http://nptel.ac.in/courses/106101060/.
- W2: http://www.facweb.iitkgp.ernet.in/~sourav/daa.html.
- W3: http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course= IntroToAlgorithms.

B. P. Poddar Institute of Management & Technology Department of Information Technology Lesson Plan Academic Year: 2018-19 Semester: Odd

Assistant Prof. Dept of IT

B. P. Poddar Institute of Management & Technology Department of Information Technology Academic Year: 2018-19 Semester: Odd

Course Name: Design and Analysis of Algorithm

Course Code: IT501

Course Outcomes:

IT501.1	Understand the asymptotic performance analysis of algorithms.
IT501.2	Familiar with major algorithms design techniques (brute-force, divide and conquer, greedy, etc.)
IT501.3	Evaluate various searching, sorting and graph traversal algorithms.
IT501.4	Apply Amortized Analysis,Network Flow and Matrix multiplication algorithm concepts in problem solving.
IT501.5	Analyze NP ,NP complete problems and approximation algorithms

CO-PO-PSO Mapping:

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
IT501.1	2													
IT501.2	2	2	2	2								1	2	
IT501.3	2	2	2	2								1	2	
IT501.4	2	2	2	2								1	2	
IT501.5	2	2	3	3								1	2	
IT501	2	1.6	1.8	1.8								0.8	2	